Abstract
The assessment of athletic performance using non-invasive methods has been a significant focus in research aimed at measuring physiological parameters. This study explores the application of bioelectrical impedance vector analysis (BIVA) among track and field athletes, with a focus on sex differences, electrode configuration, and the correlation between BIVA parameters and jump performances. This cross-sectional study involved 61 Italian track and field athletes: 31 females and 30 males (age: 21.4 ± 3.8; 21.1 ± 2.6 years; stature: 166.1 ± 6.1; 180.1 ± 5.0 cm; body mass: 57.4 ± 9.7; 72.5 ± 10.5 kg, respectively). Anthropometric measurements, bioelectrical impedance analysis, and athletic jump performance were conducted. The RXc graph, two-sample Hotelling's T2 test for BIVA, and one-way ANOVA for specialty comparisons were employed. Pearson and Spearman's tests evaluated the correlations between BIVA parameters and jump performance. Differences in bioimpedance values were observed between athlete groups. Lateral asymmetries were more pronounced in females. Correlations between BIVA and jump performance also varied by sex and electrode configuration, ranging from r = -0.072, p = 0.699-r = 0.555, p = 0.001 in females, and from r = 0.204, p = 0.281-r = 0.691, p = 0.001 in males. This study highlights the utility of BIVA in providing rapid and non-invasive assessments of body composition and its relationship with jump performance, considering variations in athlete sex and electrode configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.