Abstract

BackgroundThere is a need for a practical, inexpensive method to assess body composition in obese adolescents. This study aimed to 1) compare body composition parameters estimated by a stand-on, multi-frequency bioelectrical impendence (BIA) device, using a) the manufacturers’ equations, and b) published and derived equations with body composition measured by dual-energy x-ray absorptiometry (DXA) and 2) assess percentage body fat (%BF) change after a weight loss intervention.MethodsParticipants were 66 obese adolescents, mean age (SD) 12.9 (2.0) years. Body composition was measured by Tanita BIA MC-180MA (Tanita BIA8) and DXA (GE-Lunar Prodigy). BIA resistance and reactance data at frequencies of 5, 50, 250 and 500 kHz, were used in published equations, and to generate a new prediction equation for fat-free mass (FFM) using a split-sample method. Approximately half (n = 34) of the adolescents had their body composition measured by DXA and BIA on two occasions, three to nine months apart.ResultsThe correlations between FFM (kg), fat mass (kg) and %BF measured by BIA and DXA were 0.92, 0.93 and 0.78, respectively. The Tanita BIA8 manufacturers equations significantly (P < 0.001) overestimated FFM (4.3 kg [-5.3 to 13.9]) and underestimated %BF (-5.0% [-15 to 5.0]) compared to DXA. The mean differences between BIA derived equations and DXA measured body composition parameters were small (0.4 to 2.1%), not significant, but had large limits of agreements (~ ±15% for FFM). After the intervention mean %BF loss was similar by both methods (~1.5%), but with wide limits of agreement.ConclusionThe Tanita BIA8 could be a valuable clinical tool to measure body composition at the group level, but is inaccurate for the individual obese adolescent.

Highlights

  • There is a need for a practical, inexpensive method to assess body composition in obese adolescents

  • We identified two previous studies which targeted overweight and obese adolescents [5,6]

  • This study aimed to 1) compare body composition parameters estimated by the stand-on, multi-frequency bioelectrical impedance analysis (BIA) device, the Tanita BIA MC-180MA (Tanita BIA8), using a) the manufactures equations, and b) published and derived equations using raw data (resistance (R) and reactance (Xc)), with body composition parameters measured by dual-energy x-ray absorptiometry (DXA) in overweight and obese adolescents and 2) assess change in %Percentage body fat (BF) as measured by DXA and Tanita BIA8 after a weight loss intervention

Read more

Summary

Introduction

There is a need for a practical, inexpensive method to assess body composition in obese adolescents. This study aimed to 1) compare body composition parameters estimated by a stand-on, multi-frequency bioelectrical impendence (BIA) device, using a) the manufacturers’ equations, and b) published and derived equations with body composition measured by dual-energy x-ray absorptiometry (DXA) and 2) assess percentage body fat (%BF) change after a weight loss intervention. Assessment of paediatric body composition is of increasing interest for routine monitoring of treatment efficacy, including weight loss interventions. Reference methods for determining body composition, including dual-energy x-ray absorptiometry (DXA), are costly, time consuming and frequently difficult to access. There is a great variety of prediction equations, which have been recently reviewed, resulting in large, inconsistent variations in estimated body composition parameters [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.