Abstract
BackgroundHypernatremia is associated with poor outcomes in critically ill patients, and an accurate assessment of water volume is important to determine appropriate fluid hydration. Bioelectrical impedance analysis (BIA) is a new, noninvasive, and relatively easy method for measuring hydration status. This study aimed to investigate whether bioelectrical impedance measurements of body water could reduce the frequency of blood sampling for fluid replacement in patients with hypernatremia.Material/MethodsFifty-one hospitalized patients were studied with hypernatremia, defined as a serum sodium ≥150 mmol/L determined by laboratory testing. Laboratory and BIA measurements were compared, and water deficiency was calculated with a conventional formula (sodium-corrected Watson formula) and measured by BIA.ResultsThe value of the absolute fluid overload (AFO) equivalent to the overhydration (OH) value, determined using BIA, did not accurately represent water deficit in patients with hypernatremia (r=0.137, P=0.347). Although the total body water (TBW) measured by BIA showed a significant correlation with that determined by the conventional formula (r=0.861, P<0.001), there was a proportional bias (r=0.617, P<0.001). The intracellular water (ICW) measured by BIA underestimated the TBW level calculated by the conventional formula by about 14.06±4.0 L in the Bland-Altman analysis.ConclusionsIt is not currently possible to replace blood testing with BIA for assessing volume status in hypernatremic patients. However, ICW value measured by BIA might represent plasma sodium level more accurately than extracellular water (ECW) or TBW value in patients with hypernatremia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical science monitor : international medical journal of experimental and clinical research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.