Abstract

Identification of low muscle mass becomes increasingly relevant due to its prognostic value in cancer patients. In clinical practice, mid-upper arm muscle circumference (MAMC) and bioelectrical impedance analysis (BIA) are often used to assess muscle mass. For muscle-mass assessment, computed tomography (CT) is considered as reference standard. We investigated concordance between CT, BIA, and MAMC, diagnostic accuracy of MAMC, and BIA to detect low muscle mass and their relation with the clinical outcome malnutrition provided with the Patient-Generated Subjective Global Assessment Short Form (PG-SGA SF). This cross-sectional study included adult patients with advanced esophageal and gastrointestinal cancer. BIA, MAMC, and PG-SGA-SF were performed. Routine CT-scans were used to quantify psoas muscle index (PMI) and skeletal muscle area. Good concordance was found between CTPMI and both BIAFFMI (fat free mass index) (ICC 0.73), and BIAASMI (appendicular skeletal muscle index) (ICC 0.69) but not with MAMC (ICC 0.37). BIAFFMI (94%), BIAASMI (86%), and MAMC (86%) showed high specificity but low sensitivity. PG-SGA-SF modestly correlated with all muscle-mass measures (ranging from −0.17 to −0.43). Of all patients with low muscle mass, 62% were also classified with a PG-SGA-SF score of ≥4 points. Although CT remains the first choice, since both BIA and MAMC are easy to perform by dieticians, they have the potential to be used to detect low muscle mass in clinical practice.

Highlights

  • Among patients with advanced cancer, malnutrition is common [1,2] and accompanied by weight loss [3] and loss of fat free mass (FFM) [4]

  • The Bland−Altman analysis showed limits of agreement ranging from −1.45 to 1.45 z-score for CTPMI and BIAFFMI. for CTPMI and BIAASMI, limits of agreement ranging from −1.56 to 1.56 z-score

  • BIAFFMI and mid-upper arm muscle circumference (MAMC), limits of agreement ranged from −1.69 to 1.69 z-score

Read more

Summary

Introduction

Among patients with advanced cancer, malnutrition is common [1,2] and accompanied by weight loss [3] and loss of fat free mass (FFM) [4]. Identifying, prevention, and treatment of malnutrition might offer an opportunity to enhance quality of patient care, improve clinical outcomes, and reduce healthcare costs [10,11]. There is growing evidence that early and evidence-based dietary counselling leads to improved dietary intake (energy and protein), body weight, nutritional status, enhanced oncologic and quality of life outcomes, and reduced complications [12,13,14,15,16]. Low muscle mass is not routinely recognized in current practice, since the assessment of nutritional status is mainly based on overall weight loss or decreased body mass index (BMI) alone, which does not differentiate fat mass from muscle mass [20,21]

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.