Abstract

Traditional polymeric fibrous membranes have been extensively used to reduce the health risks caused by airborne particulate matter (PM), leading to the dramatically increasing pollution of plastics and microplastics. Although great efforts have been made to develop poly(lactic acid) (PLA)-based membrane filters, they are frequently dwarfed by their relatively poor electret properties and electrostatic adsorptive mechanisms. To resolve this dilemma, a bioelectret approach was proposed in this work, strategically involving the bioinspired adhesion of dielectric hydroxyapatite nanowhiskers as a biodegradable electret to promote the polarization properties of PLA microfibrous membranes. In addition to significant improvements in tensile properties, the incorporation of hydroxyapatite bioelectret (HABE) enabled remarkable increase in the removal efficiencies of ultrafine PM0.3 in a high-voltage electrostatic field (10 and 25 kV). This was exemplified by the largely increased filtering performance (69.75%, 23.1 Pa) for PLA membranes loaded with 10 wt% HABE at the normal airflow rate (32 L/min) compared to the pristine PLA counterpart (32.89%, 7.2 Pa). Although the filtration efficiency of PM0.3 for the counterpart dramatically decreased to 21.6% at 85 L/min, the increment was maintained at nearly 196% for the bioelectret PLA, while an ultralow pressure drop (74.5 Pa) and high humidity resistance (RH 80%) were achieved. The unusual property combination were ascribed to the HABE-enabled realization of multiple filtration mechanisms, including the simultaneous enhancement of physical interception and electrostatic adsorption. The significant filtration applications, unattainable with conventional electret membranes, demonstrate the bioelectret PLA as a promising biodegradable platform that allows high filtration properties and humidity resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.