Abstract
Ultrasound can be used to target endothelial cells in cancer therapy where the destruction of vasculature leads to tumor cell death. Here, we demonstrate ultrasound bioeffects in which the levels of genes in endothelial cells can be significantly altered by ultrasound-stimulated microbubble exposure. These were compared with established effects of radiation on endothelial cells at a gene level. Human-endothelial cells were exposed to ultrasound and microbubbles, radiation or combinations of ultrasound, microbubbles and radiation. Gene expression analyses revealed an up-regulation of genes known to be involved in apoptosis and ceramide-induced apoptotic pathways, including SMPD2, UGT8, COX6B1, Caspase 9 and MAP2K1 with ultrasound-stimulated microbubble exposure but not SMPD1. This was supported by immunohistochemistry and morphologic changes examined with cell microscopy, which showed changes in SMPD1 gene product in cells with microbubble exposure. This supports the hypothesis that ultrasound-stimulated microbubbles can induce significant bioeffect-related changes in gene expression and can affect ceramide signaling pathways in endothelial cells, leading to apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.