Abstract

Photosynthetic bacteria (PSB) technology is a promising method for biomass, protein, pigments, and other value-added substances generation from wastewater. However, the above bioresources production efficiency is relatively low. In this work, a static magnetic field (SMF) was used to promote bioresources production. Results showed that SMF had positive effects on value-added substances production. With 0.35 Tesla (T) SMF, the PSB biomass, protein, carotenoids, and bacteriochlorophyll concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1% compared with the control group, respectively. Biomass yield finally reached 0.58g biomass/g COD removal, which was promoted by 37.1%. The doubling time was shortened by 37.9% in 0.35T group, showing that SMF can promote cell growth. With 0.35T SMF, the intracellular NADH dehydrogenase and ATP synthase activities concentration increased by 23.4% and 29.1%, respectively, thus increased the ATP content by 38.0%. Succinic dehydrogenase activity concentration greatly increased by 609.0% at 48hr, which potentially accelerated the tricarboxylic acidcycle and COD degradation as well as enhanced biomass production. PRACTITIONER POINTS: SMF promoted PSB bioresource production during wastewater treatment processing. Biomass, protein, carotenoids, and Bchl concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1%, respectively. PSB yield of 0.35 T group was promoted by 37.1% compared with the control group. SDH concentration of 0.35 T was promoted by 609.0% compared with the control group. Increased NADH and ATP synthase activity concentration by SMF enhanced energy metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.