Abstract

The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass production and ethanol farmer/producers are used to examine the stability properties of the ML system. A bio-economic model that maximizes the utility of consumption having the dynamics of MLs and the farmer/producers as dynamic constraints is used to examine the effects of increased conversion efficiency, input costs, risk, and levels of base resources and inputs on the competitive and societal solutions for biomass production. We posit ML abandonment after biofuel production ceases could lead to permanent land degradation below initial levels that prohibit the establishment of the original flora and fauna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.