Abstract
The effects of induced hypoxic-anoxic conditions on the metazoan meiofaunal assemblages and nematode diversity were investigated with an in situ experiment in a Posidonia oceanica meadow. The experiment, of the duration of five months, was performed in three experimental sets of plots. Two of them were enriched with organic matter to induce anoxic conditions (1 set with sucrose and 1 set with sugar plus nutrients, i.e. nitrogen and phosphorus) whereas the last set of plots was kept undisturbed and used as Control. Metazoan meiofauna displayed a fast response to the induced anoxic conditions with an immediate reduction of the richness of taxa (only nematodes and copepods tolerated the hypoxic-anoxic conditions). Nematodes were the most tolerant organisms as their species richness did not change in hypoxic-anoxic conditions, but their species composition and trophic structure displayed significant changes. Some genera (Desmoscolex and Bolbolaimus) were replaced by other (Chromadorella, Sabatiera and Polysigma) more tolerant to the extreme conditions. No significant differences were observed in the Control plots, whereas in treated plots, selective deposit feeders and predators decreased significantly, being replaced by non-selective deposit feeders and epistrate feeders. These results indicate that, events causing a reduction in oxygen availability, can have an impact on the nematode beta-diversity and functional diversity with potential important implications on the benthic food web and functioning of the seagrass systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.