Abstract
The Antarctic sublittoral is one of the most demanding habitat for polar bottom-dwelling organisms, as the disturbance of this zone is highly intense. Rapid changes in the marine environment, such as increases in atmosphere and surface water temperatures, can cause dramatic changes in biodiversity, especially in glacial fjords affected by heavy melt water inputs from the retreating glaciers. In such areas, rocks are often an important support for local diversity, providing habitats for a number of encrusting organisms. Thus, understanding the patterns of diversity of shallow rock encrusting fauna and factors controlling it are particularly important.The structure and diversity patterns of rock encrusting fauna were examined from four ecologically contrasting sites in the shallow sublittoral (6–20 m) of Admiralty Bay (King George Island). The results revealed a rich and abundant encrusting community with bryozoans and polychaetes outcompeting representatives of other fauna such as foraminifera and porifera. Spatial variability in species composition, as well as biological parameters, revealed the trend of encrusting assemblages declining towards the inner fjord areas - strongly affected by high sediment input (species richness: 13.3 ± 1.2, and abundance: 68,932.99 ± 11,915.98 individuals m−2 ± standard error). In contrast, at sites more open to the central basin, a peak of biological parameters was observed (24.8 ± 1.4 and 297,360.9 ± 30,314.72, respectively). We suggest that increased sedimentation was the major factor structuring the encrusting assemblages in Ezcurra Inlet, masking the influence of other parameters, such as food and light availability, which are important for the distribution of epifauna. Thus, if the increasing intensity of glacial processes will continue in the upcoming years, the diversity of the encrusting fauna in the shallow sublittoral could dramatically decrease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.