Abstract

The main organic contaminants in municipal wastewater are proteins, polysaccharides, and lipids, which must be hydrolyzed to smaller units. A high concentration of oil and grease in wastewater affects biological wastewater treatment processes by forming a layer on the water surface, which decreased the oxygen transfer rate into the aerobic process. Microbial proteases, lipases, amylases, and celullases should play essential roles in the biological wastewater treatment process. The present study aimed to isolate lipase- and other hydrolytic enzyme-producing microorganisms and assess their degradation capabilities of fat and oil wastewater in the laboratory. We also evaluated microbial interactions as an approach to enhance lipolytic activity. We place emphasis on lipase activity because oil and grease are not only environmental pollutants, but also form an undesirable tough crust on pipes of sewage treatment plants. Thirty-five lipolytic microorganisms from sewage were identified and assessed for hydrolytic enzyme profiles. Lipases were characterized in detail by quantification, chain length affinity, and optimal conditions for activity. The good stability of isolated lipases in the presence of chemical agents, thermal stability, wide range of pH activity and tolerance, and affinity for different lengths of ester chains indicates that some of these enzymes may be good candidates for the hydrolysis of organic compounds present in wastewater. A combination of enzymes and fermenting bacteria may facilitate the complete hydrolysis of triglycerides, proteins, and lingo-cellulose that normally occur in the wastes of industrial processes. This study identifies enzymes and microbial mixtures capable of digesting natural polymeric materials for facilitating the sewage cleaning process.

Highlights

  • For more than a century, biological wastewater treatment has been used to minimize anthropogenic damage to the environment

  • Our lipolytic microbial stock was selected by the presence of a halo around colonies when wastewaters were spread over Spirit Blue agar supplemented with 3% (v/v) tributyrin emulsion

  • Because any lipase can be classified as an esterase, some showed lipolytic activity among the selected microorganisms

Read more

Summary

Introduction

For more than a century, biological wastewater treatment has been used to minimize anthropogenic damage to the environment. Oil and Grease (O&G) are the major problems and contaminants in biological wastewater treatment processes. Because of their nature, O&G form a layer on the water surface and decrease the oxygen transfer rate into an aerobic process [1]. O&G form a layer on the water surface and decrease the oxygen transfer rate into an aerobic process [1] These contaminants are mainly discharged from restaurants, food industries, and households [1,2]. The efficiency of conventional biological processes in wastewater treatment is reduced by the high concentrations of O&G in effluents [6]. The Brazilian National Council on the Environment (CONAMA) established the maximum level of mineral oil concentration allowed for effluent in water bodies at 20 mg/l, and the maximum level of vegetable oils and animal fats to 50 mg/l in Article 34, Resolution number 357 established on March 17, 2005 [10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call