Abstract
Polyhydroxyalkanoates (PHAs), the intracellular polymers produced by various microorganisms as carbon and energy storage, are of great technological potential as biodegradable versions of common plastics. PHA-producing microbes are therefore in great demand and a plethora of different environments, especially extreme habitats, have been probed for the presence of PHA-accumulators. However, the polar region has been neglected in this regard, probably due to the low accessibility of the sampling material and unusual cultivation regime. Here, we present the results of a screening procedure involving 200 bacterial strains isolated from 25 habitats of both polar regions. Agar-based tests, microscopy, and genetic methods were conducted to elucidate the biodiversity and potential of polar-region PHA-accumulators. Microscopic observation of Nile Red stained cells proved to be the most reliable screening method as it allowed to confirm the characteristic bright orange glow of the Nile Red–PHA complex as well as the typical morphology of the PHA inclusions. Psychrophilic PHA-producers belonged mostly to the Comamonadaceae family (Betaproteobacteria) although actinobacterial PHA synthesizers of the families, Microbacteriaceae and Micrococcaceae also featured prominently. Glacial and postglacial habitats as well as developed polar region soils, were evaluated as promising for PHA-producer bioprospection. This study highlights the importance of psychrophiles as biodiverse and potent polyhydroxyalkanoate sources for scientific and application-aimed research.
Highlights
Polyhydroxyalkanoates (PHA) are a group of intracellular polymers synthesized by a variety of prokaryotic microorganisms
We present a screening of 200 bacterial isolates derived from 25 different habitats all located in polar regions of both the Arctic and Antarctica done by popular testing methods
Bacterial strains used in this study are part of the Central Collection of Strains of the Institute of Biochemistry and Biophysics Polish Academy of Sciences
Summary
Polyhydroxyalkanoates (PHA) are a group of intracellular polymers synthesized by a variety of prokaryotic microorganisms. Their primary function is that of a carbon and energy storage to be used in starvation periods. They are produced from the excess carbon present in the cells’ environment and consist of polyesters of hydroxyalkanoic acids with chains of varying lengths. Amino acid sequence overlap between enzymes representing different classes is moderate at best, albeit their products can be divided into short side chain length PHAs (scl-PHAs) produced mainly by the actions of the I, III and IV class synthases and
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.