Abstract

BackgroundThe mass occurrence of scyphozoan jellyfish severely affects marine ecosystems and coastal economies, and the study of blooming jellyfish population dynamics has emerged in response. However, traditional ecological survey methods required for such research have difficulties in detecting cryptic life stages and surveying population dynamics owing to high spatiotemporal variations in their occurrence. The environmental DNA (eDNA) technique is an effective tool for overcoming these limitations.ResultsIn this study, we investigated the biodiversity and spatial distribution characteristics of blooming jellyfish in the Bohai Sea of China using an eDNA metabarcoding approach, which covered the surface, middle, and bottom seawater layers, and sediments. Six jellyfish taxa were identified, of which Aurelia coerulea, Nemopilema nomurai, and Cyanea nozakii were the most dominant. These three blooming jellyfish presented a marked vertical distribution pattern in the offshore regions. A. coerulea was mainly distributed in the surface layer, whereas C. nozakii and N. nomurai showed a upper-middle and middle-bottom aggregation, respectively. Horizontally, A. coerulea and C. nozakii were more abundant in the inshore regions, whereas N. nomurai was mainly distributed offshore. Spearman’s correlation analysis revealed a strong correlation between the eDNA of the three dominant blooming jellyfish species and temperature, salinity, and nutrients.ConclusionsOur study confirms the applicability of the eDNA approach to both biodiverstiy evaluation of blooming jellyfish and investigating their spatial distribution, and it can be used as a supplementary tool to traditional survey methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call