Abstract

Tropical montane cloud forest landscapes are changing, and forest conversion to other land uses is a major driver of biodiversity loss. Land use intensification can lead to significant losses in biodiversity and carbon storage (C); however, the impacts may vary greatly depending on land use type, management practices, and environmental context. We investigated how biodiversity and C are related along a gradient of land use intensification characterized by four dominant land uses in the upper part of Antigua River watershed, Mexico. The land uses were montane cloud forest, secondary forest, and traditional and intensive shade coffee plantations. We determined tree species composition, diversity, ecosystem structure, wood density and C content in dominant tree species to assess aboveground biomass (AGB) and C storage within eight study sites across the land use intensity gradient. A total of 83 tree species was recorded. A canonical correspondence analysis indicated that land uses are separated by particular tree species assemblages. Forests had higher basal area, density, and biomass than coffee plantations, however, the traditional shade coffee plantation had values similar to secondary forest. Calculating C using the standard estimate of 50% of AGB resulted in an overestimation of stored C by 5.8 to 4.1% compared to calculations based on actual measurements. Carbon storage in AGB and biodiversity were strongly and positively related across the land use intensity gradient, although the distinction between the two different intensities of coffee plantation management was not consistently as clear as we had expected. Carbon was highest in forest, but secondary forests and traditional shade coffee plantation had similar C, while intensive coffee had the lowest C content. These results highlight the importance of considering the potential of low intensity land uses such as traditional coffee plantations to mitigate biodiversity loss and preserve ecosystem functions as part of conservation efforts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call