Abstract

Recently, coral-associated microorganisms have attracted widespread attention, and most of these studies have focused on stony and soft corals. However, our knowledge of the diversity and bioactivity of microorganisms in gorgonian corals is still limited. In this study, the biodiversity of microbes in two gorgonian corals (Leptogorgia rigida and Menella kanisa) from the South China Sea was investigated by combining traditional culture method with molecular biology technique (bacterial 16S or fungal internal transcribed spacer (ITS) rRNA gene sequences). A total of 216 bacterial and 98 fungal isolates were obtained using 4 different isolation media. These isolates were identified and belonged to 31 bacterial and 12 fungal species, suggesting an unexpectedly diverse microbial community harbored in the South China Sea gorgonian corals L. rigida and M. kanisa. Furthermore, 56% of the tested microbial isolates displayed various antifouling activities against four biofouling organisms (including two microfouling bacteria Micrococcus luteus and Shewanella onedensis, and two macrofouling organisms Bugula neritina and Balanus amphitrite). Among the microbial isolates with antifouling activity, Bacillus firmus SCAU-038 and Streptomyces parvulus SCAU-062 displayed moderate or strong antifouling activity against all tested biofouling organisms. This is the first study on the biodiversity and antifouling activity of microorganisms associated with gorgonians L. rigida and M. kanisa from the South China Sea. These results contribute to the further understanding of microorganisms associated with gorgonian corals and provide potential resources for new natural antifouling agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.