Abstract

"Ex vivo" regional gene therapy using lentiviral (LV) vectors to over-express bone morphogenetic protein 2 (BMP-2) is an effective way to enhance bone healing in animal models. Here, we evaluated two different "ex vivo" approaches using either "same day" rat bone marrow cells (SDRBMCs) or cultured rat bone marrow cells (C-RBMCs), both transduced with a LV based two-step transcriptional activation system overexpressing GFP (LV-TSTA-EGFP), to assess the fate of the transduced cells and the safety of this approach. The transduced cells were implanted in femoral defects of syngeneic rats. Animals were sacrificed at 4, 14, 28 and 56 days after surgery (n=5 per group). Viral copies were detectable in the defect site of SD-RBMC group and gradually declined at 8w (5 log decrease compared to 4d). In the C-RBMC animals, there was a 2-4 log decline in the viral copy numbers at 2w and 4w, but at 8w there was a relative rise (about 100 fold) in the number of the viral vectors in the defect site of 4 (out of 5) animals compared to the previous time points. For both gene transfer approaches, the pattern of tissue distribution was non-specific and no histological abnormalities were noted in either group. In summary, we demonstrated that the LV-TSTA transduced cells remain in the defect site for at least 56 days, though the numbers decreased over time. There were no consistent findings of viral copies in internal organs which is encouraging with respect to the development of this strategy for use in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.