Abstract

The extraordinary small size of NPs makes them difficult to detect and quantify once distributed in a material or biological system. We present a simple and straightforward method for the direct proton beam activation of synthetic or commercially available aluminum oxide NPs (Al2O3 NPs) via the 16O(p,α)13N nuclear reaction in order to assess their biological fate using positron emission tomography (PET). The radiolabeling of the NPs does not alter their surface or structural properties as demonstrated by TEM, DLS, and ζ-potential measurements. The incorporation of radioactive 13N atoms in the Al2O3 NPs allowed the study of the biodistribution of the metal oxide NPs in rats after intravenous administration via PET. Despite the short half-life of 13N (9.97 min), the accumulation of NPs in different organs could be measured during the first 68 min after administration. The percentage amount of radioactivity per organ was calculated to evaluate the relative amount of NPs per organ. This simple and robust activation strategy can be applied to any synthetic or commercially available metal oxide particle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.