Abstract

Pt-based nanostructures are one of the promising nanomaterials for being used in catalysts, sensors, and therapeutics. However, their impacts on the health and biological systems are not adequately understood yet. In this work, nanorods composed of ultrasmall platinum (Pt) nanoparticles deposited on the surface and gold nanorod as the core (Au@Pt NRs) were synthesized, and the distribution and toxic effects of Au@Pt NRs were investigated in C57BL/6 mice with intravenous injection by using atomic absorption spectroscopy (AAS), transmission electron microscope (TEM), hematoxylin-eosin (HE) staining and blood cell analyzer. At the time point of Day 1, Day 8 and Day 16 post injection of Au@Pt NRs (6 mg/kg of Pt atom), Au@Pt NRs were mainly accumulated in the liver and spleen. The energy dispersive spectrometer mapping images showed Au@Pt NRs experienced quick corrosion and Au released faster than Pt in the physiological environments. The catalase (CAT) activity in tissues increased slightly in the early stage of the Au@Pt NRs exposure and went down to the normal level. With HE staining, inflammatory cells infiltration could be seen in the tissues, while no significant influences were detected on the blood biochemistry and the function of liver and kidney. In conclusion, intravenously injected Au@Pt NRs mainly distributed in the liver and spleen with comparable levels, and did not exert any significant toxic effects on the organs' function within two weeks; meanwhile, Au@Pt NRs were able to degrade, which indicated acceptable safety to the mice and potentials of biomedical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.