Abstract

BackgroundTo facilitate hypoxia imaging in a clinical setting, we developed 1-(2,2-dihydroxymethyl-3-[18F]-fluoropropyl)-2-nitroimidazole ([18F]DiFA) as a new tracer that targets tumor hypoxia with its lower lipophilicity and efficient radiosynthesis. Here, we evaluated the radiation dosage, biodistribution, human safety, tolerability, and early elimination after the injection of [18F]DiFA in healthy subjects, and we performed a preliminary clinical study of patients with malignant tumors in a comparison with [18F]fluoromisonidazole ([18F]FMISO).ResultsThe single administration of [18F]DiFA in 8 healthy male adults caused neither adverse events nor abnormal clinical findings. Dynamic and sequential whole-body scans showed that [18F]DiFA was rapidly cleared from all of the organs via the hepatobiliary and urinary systems. The whole-body mean effective dose of [18F]DiFA estimated by using the medical internal radiation dose (MIRD) schema with organ level internal dose assessment/exponential modeling (OLINDA/EXM) computer software 1.1 was 14.4 ± 0.7 μSv/MBq. Among the organs, the urinary bladder received the largest absorbed dose (94.7 ± 13.6 μSv/MBq). The mean absorbed doses of the other organs were equal to or less than those from other hypoxia tracers. The excretion of radioactivity via the urinary system was very rapid, reaching 86.4 ± 7.1% of the administered dose. For the preliminary clinical study, seven patients were subjected to [18F]FMISO and [18F]DiFA positron emission tomography (PET) at 48-h intervals to compare the two tracers’ diagnostic ability for tumor hypoxia. The results of the tumor hypoxia evaluation by [18F]DiFA PET at 1 h and 2 h were not significantly different from those obtained with [18F]FMISO PET at 4 h ([18F]DiFA at 1 h, p = 0.32; [18F]DiFA at 2 h, p = 0.08). Moreover, [18F]DiFA PET at both 1 h (k = 0.68) and 2 h (k = 1.00) showed better inter-observer reproducibility than [18F]FMISO PET at 4 h (k = 0.59).Conclusion[18F]DiFA is well tolerated, and its radiation dose is comparable to those of other hypoxia tracers. [18F]DiFA is very rapidly cleared via the urinary system. [18F]DiFA PET generated comparable images to [18F]FMISO PET in hypoxia imaging with shorter waiting time, demonstrating the promising potential of [18F]DiFA PET for hypoxia imaging and for a multicenter trial.

Highlights

  • To facilitate hypoxia imaging in a clinical setting, we developed 1-(2,2-dihydroxymethyl-3-[18F]fluoropropyl)-2-nitroimidazole ([18F]DiFA) as a new tracer that targets tumor hypoxia with its lower lipophilicity and efficient radiosynthesis

  • We recently developed a new imaging tracer targeting tumor hypoxia, 1-(2,2-dihydroxymethyl-3-[18F]-fluoropropyl)-2-nitroimidazole ([18F]DiFA), to overcome the disadvantages of [18F]FMISO and obtain better contrast image quality in a shorter period of time. [18F]DiFA has lower lipophilicity and is expected to be excreted more rapidly via the urinary system

  • Mass 0.088 0.209 0.361 0.481 0.336 0.357 0.312 0.337 0.310 ± 0.109 (p-toluenesulfonyloxymethyl)-1,3-dioxane followed by acidic hydrolysis of the protecting group using an automated synthesis apparatus (UG-M1; Universal Giken, Odawara, Japan) (Fig. 1, Additional file 1: Table S1). [18F]FMISO was prepared by the nucleophilic fluorination of the precursor molecule 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulphonylpropanediol in a manner similar to that for [18F]DiFA using previously reported procedures [8, 9]

Read more

Summary

Introduction

To facilitate hypoxia imaging in a clinical setting, we developed 1-(2,2-dihydroxymethyl-3-[18F]fluoropropyl)-2-nitroimidazole ([18F]DiFA) as a new tracer that targets tumor hypoxia with its lower lipophilicity and efficient radiosynthesis. Among hypoxia PET tracers, [18F]fluoromisonidazole ([18F]FMISO) is the most extensively studied; its optimal acquisition time is 3–4 h after injection due to its slow specific accumulation in hypoxic tissue as well as its slow clearance from the plasma [2, 3]. Like [18F]FMISO, these hypoxia probes are derived from the 2nitroimidazole in their structures. They still have the clinical drawbacks of poor imaging contrast at acquisition time and limited reproducibility [5, 6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call