Abstract

Fatty acid methyl esters (FAME) are produced by transesterification of vegetable oil with methanol usually in presence of an alkaline catalyst. The purpose of this work is to compare the performance of heterogeneous (CaO, MgO, Ba(OH) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , Li/CaO, Zeolite) and homogeneous (KOH) catalyst for the transesterification of vegetable oil. The effect of stirring speed and addition of ethanol with methanol on ester yield was studied. This research showed that stirring speed has substantial effect on the ester yield both in homogeneous and heterogeneous catalyzed reaction. Addition of ethanol with methanol has improved the rate of formation of ester, thus helped in reducing the mass transfer limitations. Amongst all the heterogeneous catalysts examined, the performance of Ba(OH) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> catalyst was better which produced 99 wt% ester yield in 480 min and its performance was comparable to that of potassium hydroxide. Ester obtained from canola oil and methanol and ethanol mixture (3:3) {MEE (3:3)} acted as a good lubricity additive by reducing wear scar area by 16% and improving the lubricity number of base fuel by 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call