Abstract

The rapid depletion of fossil fuel resources and climatic changes has triggered the researchers' attention to find an alternative and renewable energy source. Thus, biodiesel has been recognized as a potential alternative to petrodiesel for its biodegradability, non-toxicity, and environment-friendly attributes. In this study, an efficient and recyclable Cu–Ni doped ZrO2 catalyst was synthesized and used to produce biodiesel from a novel non-edible caper (Capparis spinosa L.) seed oil. The synthesized catalyst was characterized by x-ray diffraction, fourier-transform infrared spectroscopy, scanning electron microscopy, and energy dispersive x-ray analysis. The catalyst was reused in four consecutive transesterification reactions without losing any significant catalytic efficiency. Transesterification reaction conditions were optimized via response surface methodology based on Box-Behnken design for predicting optimum biodiesel yields by drawing 3D surface plots. Maximum biodiesel yield of 90.2% was obtained under optimal operating conditions of 1:6 M ratio of oil to methanol, reaction temperature of 70 °C, reaction time of 1.5 h, and 2.5% catalyst loading. Fourier-transform infrared spectroscopy, gas chromatography–mass spectrometry, and nuclear magnetic resonance (1H and 13C) analysis confirmed the high quality of biodiesel produced from non-edible caper (Capparis spinosa L.) seed oil. The fuel properties of the produced biodiesel were also found, such as kinematic viscosity (4.17 cS T), density (0.8312 kg/L), flash point (72 °C), acid no (0.21 mgKOH/g) and sulphur content (0.00042 wt%). These properties were matched and are in close agreement with the International Biodiesel Standards of European Union (EU-14214), China GB/T 20,828 (2007), and American (ASTM6751). Thus, non-edible Capparis spinosa L. seed oil and Cu–Ni doped ZrO2 catalyst appeared to be highly active, stable, and cheap candidates to boost the future biodiesel industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.