Abstract

The current research investigates sustainable biodiesel production from non-edible wild olive oil via novel Na/SiO2/TiO2 heterogeneous catalyst. The catalyst was synthesized by Sol-Gel and wet impregnation method. Furthermore, the designed catalyst was evaluated by various spectroscopic techniques like SEM, EDX, XPS, FTIR, BET and XRD. The impact of various influencing parameters such as catalyst loading, reaction temperature, oil/methanol molar ratio and reaction time were scrutinized and the maximum 97% yield was achieved at the reaction conditions of 1:20 WOSO/MeOH molar ratio, 9 wt% catalyst loading at 70 °C and 120 min of reaction time. The synthesized biodiesel was confirmed from GC–MS analysis, whereas the various physiochemical properties of synthesized biodiesel were explored by ASTMD 5761 and EN 1404 methods. The plausible reaction mechanism of Na/SiO2/TiO2 catalyzed WOSO was also proposed. Finally, the cost estimation of the designed catalyst investigates its commercial viability for low cost biodiesel production using non-edible WOSO feedstock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.