Abstract

In recent years, biodiesel has gained international attention as a source of alternative fuel due to characteristics like high degradability, no toxicity, low emission of carbon monoxide, particulate matter and unburned hydrocarbons (Al Zuhair, 2007; Vicente et al., 1998). Biodiesel is a mixture of alkyl esters and it can be used in conventional compression ignitions engines, which need almost no modification. As well, biodiesel can be used as heating oil and as fuel (Mushrush et al., 2001; Wardle, 2003). So far, this alternative fuel has been successfully produced by transesterification of vegetable oils and animal fats using homogeneous basic catalysts (mainly sodium or potassium hydroxide dissolved in methanol). Traditional homogeneous catalysts (basic or acid) possess advantages including high activity (complete conversion within 1 h) and mild reaction conditions (from 40 to 65 °C and atmospheric pressure). However, the use of homogeneous catalysts leads to soap production. Besides, in the homogeneous process the catalyst is consumed thus reducing the catalytic efficiency. This causes an increase in viscosity and the formation of gels. In addition, the method for the removal of the catalyst after reaction is technically difficult and a large amount of wastewater is produced in order to separate and clean the products, which increases the overall cost of the process. Thus, the total cost of the biodiesel production based on homogeneous catalysis, is not yet sufficiently competitive as compared to the cost of diesel production from petroleum. An alternative is the development of heterogeneous catalysts that could eliminate the additional running costs associated with the aforementioned stages of separation and purification. In addition, the use of heterogeneous catalysts does not produce soap through free fatty acid neutralization and triglyceride saponification. Therefore, development of efficient heterogeneous catalysts is important since opens up the possibility of another pathway for biodiesel production. The efficiency of the heterogeneous process depends, however, on several variables such as type of oil, molar ratio alcohol to oil, temperature and catalyst type. Thus, the objective of this chapter is to present a review of the effect of the aforesaid variables on important characteristics of biodiesel such as methyl esters content. Some characterization techniques for both, biodiesel and heterogeneous catalysts will also be addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call