Abstract

BackgroundBiodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great stability, relatively small size for convenient genetic manipulations, and ease of immobilization. Hence, it is highly important to identify novel SGNH-type lipases with high catalytic efficiencies and good stabilities.ResultsA promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Moreover, immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters.ConclusionsThis work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from H. arcticus. This is the first analysis on biodiesel and flavor synthesis using a cold-adapted halophilic SGNH-type lipase from a Halocynthiibacter species.

Highlights

  • Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process

  • Bioinformatic analysis of HaSGNH1 A gene encoding a novel SGNH-type lipase (HaSGNH1, locus tag: WP_082802169) was identified on the H. arcticus chromosome using in silico bioinformatic analysis

  • Sequence analysis revealed that HaSGNH1 has a molecular mass of ~ 25.3 kDa and consists of a single 232 amino acid polypeptide chain with a pI of 4.31

Read more

Summary

Results

A promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters

Conclusions
Background
Results and discussion
Conclusion
Materials and methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.