Abstract

Agro-stovers are the most abundant substrates for producing lactic acid, which has great potential application in the production of biodegradable and biocompatible polylactic acid polymers. However, chemical pretreatments on agro-stovers generate inhibitors that repress the subsequent lactic acid fermentation. In this study, three bacterial strains (Enterococcus faecalis B101, Acinetobacter calcoaceticus C1, and Pseudomonas aeruginosa CS) isolated from dye-polluted soils could utilize phenolic inhibitor mimics (vanillin, 4- hydroxybenzaldehyde, or syringaldehyde) from alkaline pretreated corn stovers as a sole carbon source. Lactic acid titer increased from 27.42g/L (Bacillus coagulans LA204 alone) to 44.76g/L (CS and LA204) using 50g/L glucose with 1g/L 4-hydroxybenzaldehyde added. Lactic acid production from 50g/L ammonia pretreated corn stover was increased nearly twofold by inoculating phenolic degradation bacteria and lactic acid bacteria (C1& Lactobacillus pentosus FL0421). In the control (FL0421 alone), only 16.98g/L of lactic acid was produced. The isolated and identified strains degraded the phenolic compounds and increased the lactic acid production from glucose and ammonia pretreated corn stover. These characteristics of the strains support industrial application with efficient in situ detoxification of phenolic compounds during lactic acid production from agro-stovers using simultaneous saccharification and fermentation (SSF).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call