Abstract

In this study, complicated model sulfur compounds in bunker oil and de-asphalted bunker oil were biodesulfurized in a batch process by microbial consortium enriched from oil sludge. Dibenzothiophene (DBT) and benzo[b]naphtho[1,2-d]thiophene (BNT1) were selected as model sulfur compounds. The results show that the mixed culture was able to grow by utilizing DBT and BNT1 as the sole sulfur source, while the cell density was higher using DBT than BNT1 as the sulfur source. GC-MS analysis of their desulfurized metabolites indicates that both DBT and BNT1 could be desulfurized through the sulfur-specific degradation pathway with the selective cleavage of carbon-sulfur bonds. When DBT and BNT1 coexisted, the biodesulfurization efficiency of BNT1 decreased significantly as the DBT concentrations increased (>0.1 mmol/L). BNT1 desulfurization efficiency also decreased along with the increase of 2-hydroxybiphenyl as the end product of DBT desulfurization. For real bunker oil, only 2.8 % of sulfur was removed without de-asphalting after 7 days of biotreatment. After de-asphalting, the biodesulfurization efficiency was significantly improved (26.2-36.5 %), which is mainly attributed to fully mixing of the oil and water due to the decreased viscosity of bunker oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call