Abstract

The thiol-ene emulsion polymerization of three dienes synthesized from bioderived compounds, and subsequent preparation of core-shell polymer latexes, is reported. Levoglucosan (LGA), levogucosenone (LGO) and isosorbide were first modified with 4-pentenoic acid to install polymerizable groups. These monomers were used along with a dithiol to prepare poly(thioether) particles via ab initio emulsion polymerization using potassium persulfate as initiator and sodium dodecyl sulfate as surfactant. The structure of the diene significantly influenced the size of the resulting polymer latex particles. Given their low glass transition temperature, the LGA-derived poly(thioether) particles were used as a seed for the seeded emulsion polymerization of either styrene or methyl methacrylate. Core-shell latex particles with a high Tg core and a low Tg bioderived shell were formed, as verified by electron microscopy and in agreement with theoretical predictions of the equilibrium particle morphology based on the interfacial tensions of each particle phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.