Abstract
Polyethylene terephthalate (PET) is a plastic material that is widely used in beverage bottles, food packaging, and other consumer products, which is highly resistant to biodegradation. In this study, we investigated the effects of two insect gut symbionts, Xanthomonas sp. HY-74 and Bacillus sp. HY-75, during PET biodegradation. Both strains degraded PET-containing agar plates, and the sole nutrition source assay showed that HY-74 had different degradation rates depending on the presence of specific carbon and nitrogen sources, whereas HY-75 exhibited comparable degradation across all tested conditions. The two strains biodegraded the PET film with 1.57 ± 0.21% and 1.42 ± 0.46% weight loss after 6 weeks, respectively. Changes in the morphology and structure of the PET films, such as erosion, scratching, and surface roughening, were determined using scanning electron microscopy (SEM). Further, the two strains biodegraded PET powder, broke it into its degradation products, and changed the surface functional groups. This is the first study to investigate the biodegradation of PET by Hymenoptera gut-derived microbes and offers promising insights into the potential applications of insect gut symbionts in PET waste management.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.