Abstract

Cyclic nitramine explosives are synthesized globally mainly as military munitions, and their use has resulted in environmental contamination. Several biodegradation pathways have been proposed, and these are based mainly on end-product characterization because many of the metabolic intermediates are hypothetical and unstable in water. Biodegradation mechanisms for cyclic nitramines include (a) formation of a nitramine free radical and loss of nitro functional groups, (b) reduction of nitro functional groups, (c) direct enzymatic cleavage, (d) alpha-hydroxylation, or (e) hydride ion transfer. Pathway intermediates spontaneously decompose in water producing nitrite, nitrous oxide, formaldehyde, or formic acid as common end-products. In vitro enzyme and functional gene expression studies have implicated a limited number of enzymes/genes involved in cyclic nitramine catabolism. Advances in molecular biology methods such as high-throughput DNA sequencing, microarray analysis, and nucleic acid sample preparation are providing access to biochemical and genetic information on cultivable and uncultivable microorganisms. This information can provide the knowledge base for rational engineering of bioremediation strategies, biosensor development, environmental monitoring, and green biosynthesis of explosives. This paper reviews recent developments on the biodegradation of cyclic nitramines and the potential of genomics to identify novel functional genes of explosive metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.