Abstract
Because of extensive sulfonamides application in aquaculture and animal husbandry and the consequent increase in sulfonamides discharged into the environment, strategies to remediate sulfonamide-contaminated environments are essential. In this study, the resistance of Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4 to the sulfonamides sulfapyridine (SPY) and sulfamethoxazole (SMX) were determined, and sulfonamides degradation by these strains was assessed. Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4 were resistant to SPY and SMX concentrations as high as 60mg/L. After incubation for 5days, 23.91±1.80 and 23.43±2.98% of SPY and 59.88±1.23 and 63.89±3.09% of SMX contained in the medium were degraded by S. oneidensis MR-1 and Shewanella sp. strain MR-4, respectively. The effects of the initial concentration of the sulfonamides and initial pH of the medium on biodegradation, and the degradation of different sulfonamides were assessed. The products were measured by LC-MS; with SPY as a substrate, 2-AP (2-aminopyridine) was the main stable metabolite, and with SMX as a substrate, 3A5MI (3-amino-5-methyl-isoxazole) was the main stable metabolite. The co-occurrence of 2-AP or 3A5MI and 4-aminobenzenesulfonic acid suggests that the initial step in the biodegradation of the two sulfonamides is S-N bond cleavage. These results suggest that S. oneidensis MR-1 and Shewanella sp. strain MR-4 are potential bacterial resources for biodegrading sulfonamides and therefore bioremediation of sulfonamide-polluted environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.