Abstract
The indiscriminate use of sulfadiazine has caused severe harm to the environment, and biodegradation is a viable method for the removal of sulfadiazine. However, there are few studies that consider sulfadiazine biodegradation mechanisms. To comprehensively investigate the process of sulfadiazine biodegradation by plants in a soil system, a potted system that included ryegrass and soil was constructed in this study. The removal of sulfadiazine from the system was found to be greater than 95% by determining the sulfadiazine residue. During the sulfadiazine removal process, a significant decrease in ryegrass growth and a significant increase in antioxidant enzyme activity were observed, which indicates the toxic response and detoxification mechanism of sulfadiazine on ryegrass. The ryegrass transcriptome and soil bacterial communities were further investigated. These results revealed that most of the differentially expressed genes (DEGs) were enriched in the CYP450 enzyme family and phenylpropanoid biosynthesis pathway after sulfadiazine exposure. The expression of these genes was significantly upregulated. Sulfadiazine significantly increased the abundance of Vicinamibacteraceae, RB41, Ramlibacter, and Microvirga in the soil. These key genes and bacteria play an important role in sulfadiazine biodegradation. Through network analysis of the relationship between the DEGs and soil bacteria, it was found that many soil bacteria promote the expression of plant metabolic genes. This mutual promotion enhanced the sulfadiazine biodegradation in the soil system. This study demonstrated that this pot system could substantially remove sulfadiazine and elucidated the biodegradation mechanism through changes in plants and soil bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.