Abstract

The biological turnover of riverine dissolved organic carbon (DOC) discharged into five southeastern United States estuaries was examined in long-term respiration bioassays. Measures of bacterial oxygen consumption indicated surprisingly large differences in the inherent biodegradability of DOC among the five estuaries, despite their close geographic proximity. Differences of up to 13-fold in biodegradation rates were also found temporally within a single estuary. For most of the southeastern United States estuaries, measured rates of riverine DOC biodegradation were low relative to rates reported for other freshwater and marine environments. This was particularly true for the coastal plain (“blackwater”) rivers that contribute about 35% of the riverine DOC exported to coastal marine environments in this region; extrapolation of biodegradation rates to the adjacent continental shelf predict biodegradation of a maximum of 11% of exported blackwater DOC within the estuary-shelf system (with transit times of up to 140 d). DOC from Piedmont rivers was more biologically labile, with maximum losses of 30% predicted within the estuary and adjacent shelf. Short exposures to natural sunlight increased the lability of the riverine DOC and enhanced biodegradation rates by over 3-fold in some cases, although significant inter-estuary differences in susceptibility of riverine DOC to photolysis were also evident. *** DIRECT SUPPORT *** A01BY085 00007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.