Abstract

Polyurethanes (PUs) are found in many everyday products and their disposal leads to environmental accumulation. Therefore, there is an urgent need to develop ecologically sustainable techniques to biodegrade and recycle this recalcitrant polymer and replace traditional methods that form harmful by-products. Serratia liquefaciens L135 secretes a polyurethanase with lipase activity, and this study explores the biodegradation of PUs by this bacterium and its enzyme through in silico and in vitro analyses. PUs monomers and tetramers were constructed in silico and tested with modeled and validated structure of the polyurethanase from S. liquefaciens. The molecular docking showed that all PUs monomers presented favorable interactions with polyurethanase (values of binding energy between −84.75 and −121.71 kcal mol−1), including PU poly[4,4′-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di (propylene glycol)/polycaprolactone] (PCLMDI). Due to repulsive steric interactions, tetramers showed less favorable interactions (values between 24.26 and −45.50 kcal mol−1). In vitro analyses evaluated the biodegradation of PUs: Impranil® and PCLMDI; this latter showed high binding energy with this polyurethanase in silico. The biodegradation of Impranil® by S. liquefaciens and its partially purified polyurethanase was confirmed in agar by forming a transparent halo. Impranil® disks inoculated with S. liquefaciens and incubated at 30 °C for six days showed rupture of the PU structure, possibly due to the formation of cracks visualized by scanning electron microscopy (SEM). PCLMDI films were also biodegraded by S. liquefaciens after 60 days of incubation, with the formation of pores and cracks visualized by SEM. The biodegradation may have occurred due to the action of polyurethanase produced by this bacterium. This work provides essential information on the potential of S. liquefaciens to biodegrade PUs through in silico analyses combined with in vitro analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call