Abstract
Biocomposite films from renewable sources are seen to be viable candidates as sustainable, zero-waste packaging materials. In this study, biocomposites films using chitosan and alginate as matrices, and pristine or acetylated cellulose nanocrystals (CNCs) as reinforcement agents, were fabricated, thoroughly characterized in terms of structure (with ATR-FTIR and XRD), morphology (SEM), thermal stability (TGA coupled with FTIR), water content and solubility and mechanical properties and subjected to controlled biological degradation in aqueous environment with added activated sludge. Biodegradation activity was followed through respirometry by measurement of change in partial O2 pressure using OxiTop® system. While the initial rate of biodegradation is higher in chitosan-based films with incorporated CNCs (both pristine and modified) compared to any other tested biocomposites, it was observed that chitosan-based films are not completely degradable in activated sludge medium, whereas alginate-based films reached complete biodegradation in 107 h to 112 h. Additional study of the aqueous medium with in situ FTIR during biodegradation offered an insight into biodegradation mechanisms. Use of advanced statistical methods indicated that selection of material (ALG vs CH) has the highest influence on biodegradability, followed by solubility of the material and its thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.