Abstract

Bio-enzymes have shown broad application prospects in controlling mycotoxins due to their strong specificity, fast reaction rate and mild reaction conditions. However, the number of enzymes isolated, purified and characterized to degrade patulin (PAT) is limited. We expressed an aldo-keto reductase (MgAKR) from Meyerozyma guilliermondii in Escherichia coli. The results demonstrated that the purified MgAKR could convert PAT into ascladiol in vitro with NADPH serving as a coenzyme. Adding 300 μg/mL MgAKR resulted in an 88 % reduction of PAT in fresh pear juice without affecting its quality in the biodegradation process. The site-directed mutagenesis suggested that the interaction between MgAKR and PAT occurred through the active sites of Lys242 and Leu240. This study serves as a valuable theoretical reference for the development of enzymes aimed at detoxifying PAT in fruit and their derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call