Abstract

p-Xylene is considered a recalcitrant compound despite showing a similar aromatic structure to other BTEXs (benzene, toluene, ethylbenzene, xylene isomers). This study evaluated the p-xylene biodegradation potential of three psychrophilic Pseudomonas strains (Pseudomonas putida S2TR-01, Pseudomonas synxantha S2TR-20, and Pseudomonas azotoformans S2TR-09). The p-xylene metabolism-related catabolic genes (xylM, xylA, and xylE) and the corresponding regulatory genes (xylR and xylS) of the selected strains were investigated. The biodegradation results showed that the P. azotoformans S2TR-09 strain was the only strain that was able to degrade 200mg/L p-xylene after 60h at 15°C. The gene expression study indicated that the xylE (encoding catechol 2,3-dioxygenase) gene represents the bottleneck in p-xylene biodegradation. A lack of xylE expression leads to the accumulation of intermediates and the inhibition of biomass production and complete carbon recovery. The activity of xylene monooxygenase and catechol 2,3-dioxygenase was significantly increased in P. azotoformans S2TR-09 (0.5 and 0.08 U/mg, respectively) in the presence of p-xylene. The expression of the ring cleavage enzyme and its encoding gene (xylE) and activator (xylS) explained the differences in the p-xylene metabolism of the isolated bacteria and can be used as a novel biomarker of efficient p-xylene biodegradation at contaminated sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.