Abstract

Laboratory experiments were carried out to investigate the potential of groundwater microorganisms to degrade selected heterocyclic aromatic compounds containing nitrogen, sulphur, or oxygen (NSO-compounds) under four redox-conditions over a period of 846 days. Eight compounds (pyrrole, 1-methylpyrrole, quinoline, indole, carbazole, dibenzothiophene, benzofuran, and dibenzofuran) were degraded under aerobic conditions, whereas thiophene and benzothiophene were degraded only when other compounds were degraded concomitantly. Quinoline and indole were the only two NSO-compounds degraded under anaerobic conditions, even though the microorganisms present in the anaerobic microcosms were active throughout the incubation period. A high variability in the lag period among the NSO-compounds was observed under aerobic conditions. While quinoline, indole, and carbazole were degraded with a lag period of 3–25 days, the lag periods for pyrrole, dibenzothiophene, benzofuran, and dibenzofuran were significantly longer (29–278 days). Under anaerobic conditions, lag periods of 100–300 days were observed. Differences in the degradation rate among the compounds were also observed. Indole, quinoline, carbazole, and benzofuran were quickly degraded in the aerobic microcosms, whereas a slow degradation of dibenzothiophene and dibenzofuran was observed. Pyrrole and 1-methylpyrrole were slowly degraded and 1-methylpyrrole was not completely removed within the 846 days. The anaerobic degradation rate was significantly slower than the aerobic degradation rate. The degradation rate under sulphate-reducing conditions was higher than under denitrifying and methanogenic conditions, though after re-addition of a compound a quick removal was observed. The persistence of many NSO-compounds under anaerobic conditions together with the long lag periods and the low degradation rates under aerobic conditions suggest that NSO-compounds might persist in groundwater at creosote-contaminated sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.