Abstract

Nitroaromatic compounds are important contaminants of the environment, mainly of anthropogenic origin. They are produced as intermediates and products in the industrial manufacturing of dyes, explosives, pesticides, etc. Their toxicity has been extensively demonstrated in a whole range of living organisms, and nitroaromatic contamination dating from World War II is the proof of the recalcitrance of such compounds to microbial recycling. In spite of this, bacteria have evolved diverse pathways that allow them to mineralize specific nitroaromatic compounds. Degradation sequences initiated by an oxidation, an attack by a hydride ion, or a partial reduction have been documented. Some of these reactions have been exploited in bioreactors. Although pathways and enzymes involved are rather well understood, the molecular basis of these pathways is still currently under investigation. However, productive metabolism is an exception. As a rule, most bacteria are only able to reduce the nitro group into an amino function. This reduction is cometabolic: the metabolism of exogenous carbon sources is required to provide reducing equivalents. Composting and processes in bioreactors have exploited the easy reduction of the nitroaromatic compounds. In the case an amino-aromatic compound is produced, it is important to incorporate it in the remediation scheme. Some processes dealing with both nitro- and amino-aromatic compounds have been described, the amino derivative being either mineralized by the same or, more often, another microorganism, or immobilized on soil particles. Depending on the nitroaromatic compound and the environment it is contaminating, a whole range of reactions and reactor studies are now available to help devise a successful remediation strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call