Abstract

The degradation of naphthalene using immobilized Bacillus fusiformis (BFN) strain on alginate–polyvinyl alcohol (PVA)–clays bead was much higher than that of using a freely suspended BFN strain. This was due to the beads facilitating biodegradation by enhancing concentration of naphthalene using the beads as an adsorbent in the cells’ vicinity. This was confirmed by the kinetics of naphthalene on the beads, where its adsorption onto the beads was confirmed by pseudo-second-order kinetics. The biodegradation of naphthalene fitted well to the first-order rate model. More than 99.7% of naphthalene which was removed within 12h, contained bentonite 2% (w/v), PVA 12% (w/v), alginate 0.3% (w/v) and 10% (v/v) initial biomass loading. Scanning electron microscopy (SEM) of the beads showed that B. fusiformis was evenly distributed within them. Storage stability and reusability results revealed that the ability to degrade naphthalene using beads with immobilized cells remained stable after storage at 4°C for 35 days and being reused 8 times (12 days), respectively. Furthermore the naphthalene degradation rate of immobilized cells was maintained (94.3%) at the eighth cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.