Abstract

Coated controlled-release fertilizers (CRFs) are widely used in agriculture, and the persistent presence of residual polymer coating has raised environmental concerns. This study investigates the underlying degradation dynamics of microplastics (MPs) derived from three typical materials used in CRFs, including polyethylene (PE), epoxy (EP), and polyurethane (PU), through a soil degradation test. The formation of surface biofilm, the succession process, and metabolic characteristics of microbial community are revealed by laser scanning confocal microscope, 16S rRNA sequencing, and non-targeted metabolomics analysis. The weight loss rates of PE, EP, and PU after 807 days of degradation were 16.70 %, 2.79 %, and 4.86 %, respectively. Significant secondary MPs were produced with tears and holes appeared in the coating cross sections and pyrolysis products were produced such as ethers, acids, and esters for PE; alkanes, olefins and their branched-chain derivatives for EP; and short-chain fatty acids and benzene molecules for PU. The coating surface selectively recruited the bacteria of Chujaibacter and Ralstonia and fungus of Fusarium and Penicillium, forming biofilm composed of lipids, proteins, and living cells. The metabolism of amino acids and polymers was enhanced to protect against MP-induced stress. The metabolites or intermediates of organic acids and derivatives, oxygen-contained organic compounds, and benzenoids on CRF surface increased significantly compared with soil, but there were no significant differences among different coating types. This study provides insights to the underlying mechanisms of biodegradation and microenvironmental changes of MPs in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call