Abstract

The biodegradation of undecylbenzenesulphonate (C11LAS) was studied in shake flasks at 21 degrees C using two mixed bacterial cultures. The first culture, MM1, contained a type II methanotroph and four heterotrophs, and was enriched from a groundwater aquifer. The second culture, MC, consisted of five heterotrophic strains, most of them belonging to the genus Pseudomonas, and was isolated from the wastewater of a detergent plant. Methane, carbon dioxide and oxygen concentrations were determined by gas chromatography. Concentrations of C11LAS and the aromatic intermediates were determined by reversed-phase HPLC. In spite of faster transformation of the alkyl side-chain by the culture MC, the culture MM1 containing type II methanotroph was capable of further degradation of C11LAS aromatic intermediates (sulphophenylalkanoates). The most probable mechanism for the degradation of the alkyl part of the C11LAS molecule by both cultures was omega-oxidation of the terminal methyl group followed by beta-oxidation. Studies of methane utilization demonstrated an approximately three times higher second-order rate coefficient for methane consumption (kmax/Ks) in the absence of C11LAS. This indicates a possible metabolic activity of methanotrophs in the transformation of the complex LAS molecule due to the methane monooxygenase enzyme system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.