Abstract

The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil) has been emphasized, so at the first stage the removal efficiency (RE) and elimination capacity (EC) of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs) are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

Highlights

  • Benzene is a component of gasoline and aviation fuels and is extensively used in industrial syntheses

  • Benzene degradation rate by bacterial consortium were studied at different inlet concentration levels to reach optimized conditions

  • The removal efficiency and removal capacity of gaseous benzene were evaluated at inlet concentrations ranging from 794 mg/m3 to 4804 mg/m3 for 432 hours

Read more

Summary

Introduction

Benzene is a component of gasoline and aviation fuels and is extensively used in industrial syntheses. It is frequently found as a contaminant in soil, water, and air from many industrial processes and as a result of storage tank and pipeline leakage, accidental spills, and improper waste disposal practices [1]. A number of highly efficient physical and chemical gas cleaning techniques have been developed for removal of various compounds from industrial waste gases. Chemical methods are capable of removing a broad spectrum of compounds. As a cost-effective and environmentally safe alternative, biological techniques, using indigenous bacteria have been successfully applied for the treatment of waste gases contaminated with volatile organic compounds (VOCs) [4,5,6]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.