Abstract

Plants offer many advantages over bacteria as agents for bioremediation; however, they typically lack the degradative capabilities of specially selected bacterial strains. Transgenic plants expressing microbial degradative enzymes could combine the advantages of both systems. To investigate this possibility in the context of bioremediation of explosive residues, we generated transgenic tobacco plants expressing pentaerythritol tetranitrate reductase, an enzyme derived from an explosive-degrading bacterium that enables degradation of nitrate ester and nitroaromatic explosives. Seeds from transgenic plants were able to germinate and grow in the presence of 1 mM glycerol trinitrate (GTN) or 0.05 mM trinitrotoluene, at concentrations that inhibited germination and growth of wild-type seeds. Transgenic seedlings grown in liquid medium with 1 mM GTN showed more rapid and complete denitration of GTN than wild-type seedlings. This example suggests that transgenic plants expressing microbial degradative genes may provide a generally applicable strategy for bioremediation of organic pollutants in soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.