Abstract

Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call