Abstract
Drotaverine [1-(3,4-diethoxybenzylidene)-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline] hydrochloride, an antispasmodic drug derived from benzylisoquinoline was evaluated for its biodegradability using a bacterial strain Rhodococcus rhodochrous IEGM 608. The experiments were performed under aerobic conditions with rhodococci cultures able to degrade drotaverine. In the presence of glucose, the removal efficiency of drotaverine by free Rhodoccocus cells pre-grown with isoquinoline was above 80% (200mg/l, initial concentration) after 25days. Rhodococcus immobilization on hydrophobized sawdust enhanced the biodegradation process, with the most marked drotaverine loss being observed during the first 5days of fermentation. High metabolic activity of rhodococcal cells towards drotaverine was confirmed respirometrically. GC-MS analysis of transformation products resulting from drotaverine biodegradation revealed 3,4-diethoxybenzoic acid, 3,4-diethoxybenzaldehyde and 3,4-diethoxybenzoic acid ethyl ester which were detected in the culture medium until drotaverine completely disappeared. Based on these major and other minor metabolites, putative pathways for drotaverine biodegradation were proposed. The obtained data broadened the spectrum of organic xenobiotics oxidized by Rhodoccocus bacteria and proved their potential in decontamination of natural ecosystems from pharma pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.