Abstract
We investigated the potential of white-rot fungi for bioremediation of aqueous environments contaminated with diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea). First, diuron degradation activities of several white-rot fungi (Ceriporia lacerata, Phanerochaete chrysosporium, Phanerochaete sordida, Trametes versicolor) and a brown-rot fungus (Gloeophyllum trabeum) were evaluated under low- or high-nitrogen conditions. While G. trabeum showed hardly any degradation activity, white-rot fungi except for C. lacerata showed degradation activity, at least under some conditions. In particular, the activity of T. versicolor was high regardless of culture conditions (30–35% degradation at both levels of nitrogen). T. versicolor degraded diuron to two metabolites, 1-(3,4-dichlorophenyl)-3-methylurea and 1-(3,4-dichlorophenyl)urea, and did not accumulate the highly toxic metabolite 3,4-dichloroaniline. Moreover, the diuron content of artificially contaminated water dramatically decreased from 1.0 to 0.012 µM and artificially contaminated seawater (3.4% sea salt, w/v) decreased to 0.405 µM after incubation for 2 weeks with shaking on T. versicolor-colonized wood medium. These results indicated that wood medium colonized with white-rot fungi may be applicable for bioremediation and detoxification of diuron-contaminated aqueous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.