Abstract

A metal resistant bacterial strain, Bacillus cereus JP12, could use decabromodiphenyl ether (BDE-209) as the sole carbon and energy source for growth in mineral salt medium. Under the conditions of pH 6.0, 30°C, 150 rpm and an inoculum of OD600=0.6, more than 88% of the initial BDE-209 (1mg/L) was degraded after 12 days. The addition of appropriate surfactants and additional carbon sources could enhance the biodegradation efficiency of BDE-209. The presence of Cu(2+) (≤ 8 mg/L) and Zn(2+) (≤ 15 mg/L) provided a slight stimulating effect on BDE-209 removal. However, BDE-209 biodegradation efficiency was decreased when adding higher levels of metals due to reduced substrate availability caused by excess metal adsorption into the cell surface. Biosorption of heavy metals by JP12 led to release of light metals such as K(+) and Na(+). A BDE-209 biodegradation pathway was proposed on the basis of metabolite identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.