Abstract

Decabromodiphenyl ether (DBDE) is a brominated flame retardant that is commonly used in many commercial products. Sorption of DBDE within a soil/water system can result in serious bioaccumulation within the ecological system and be a threat to human health. Little is known about aerobic DBDE biodegradation, and the influence of the UV light radiation on DBDE biodegradation has not been considered. This study, for the first time, isolates DBDE biodegrading aerobic mixed bacterial cultures from DBDE-contaminated soil/water systems in Taiwan. The aerobic biodegradation of DBDE as a sole carbon source in the presence of 365 nm UVA irradiation over 10 months was investigated using a clay/water system. The rate constants for DBDE degradation gave values ranging from 0.0121 to 0.0134 day−1 in the presence of UV irradiation, which were significantly higher than the 0.0092–0.0102 day−1 values obtained in complete darkness. The aerobic metabolites: 2′,3′-dihydroxy-4-bromodiphenyl ether and 2′,3′-dihydroxy-diphenyl ether were identified by GC–MS. Debromination was ascribed to UV irradiation and biodegradation by facultative aerobic bacteria in the micro-anaerobic environment of the clay/water system. The products of debromination included 12 PBDE congeners (tri- to hexa-BDEs) and their concentrations ranged from 34.28 to 83.80 mg l−1. Specific bacteria capable of degrading PBDEs and carrying out nitrification/denitrification were identified. The present findings suggest that systems using a novel combination of photolysis and biodegradation could be developed to carry out DBDE remediation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call