Abstract

Information pertaining to biodegradability of renewable polymeric material is critical for the design and development of single-use biodegradable consumer products. The rate and extent of biodegradation of corn fiber, corn zein, cornstarch, distillers grain, and corn gluten meal were evaluated in compost environments under variable temperature, pH, and moisture conditions. Generally, composts with higher temperature (408C), neutral pH (7.0), and 50%‐60% moisture appeared to be ideal for corn coproduct biodegradation, particularly for corn gluten meal and corn zein. Low moisture conditions slowed biodegradation considerably, but degradation rates improved when moisture content increased up to 60%. Thereafter, increased moisture particularly slowed the degradation of corn gluten meal and corn zein, whereas cornstarch degradation remained unaffected. At low pH (4.0) and high pH (11.0) the rate of degradation of most coproducts was slowed somewhat. Cornstarch degradation was slower at pH 7.0, but degradation improved with increased temperatures. Increase in compost temperature from 25 to 408C (in 58C increments) also improved biodegradation of corn fiber and distillers grain. Addition of 1% urea to compost as a nitrogen source decreased the extent of biodegradation nearly 40% for corn gluten meal and corn zein, and 20% for cornstarch samples. Treatment of compost with 0.02% azide inhibited biodegradation of all coproducts, suggesting that the presence of metabolically active microbial cells is required for effective degradation of biobased materials in a compost environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.