Abstract

Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t 1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.

Highlights

  • Synthetic organophosphates (OPs) are the most frequently and widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales [1,2]

  • Phylogenetic analysis of the 5.8S rDNA gene sequences revealed that strain Hu-01 grouped among Cladosporium species and was closely related to C. cladosporioides strain ATT097 (GenBank accession No H607834) and C. cladosporioides strain CY141 (GenBank accession No HQ607983) with high identities (.99%) (Fig. 2)

  • A novel fungal strain C. cladosporioides strain Hu-01 responsible for chlorpyrifos degradation was isolated from organophosphatecontaminated soils using an enrichment procedure

Read more

Summary

Introduction

Synthetic organophosphates (OPs) are the most frequently and widely used insecticides, accounting for an estimated 34% of world-wide insecticide sales [1,2]. Most organophosphorus insecticides share a similar structure, containing three phosphoester linkages and are often termed phosphotriesters [3] This class of pesticides have acute neurotoxicity attributing to their ability to suppress acetylcholinesterase (AchE) [4], and various clinical effects can occur due to their poisoning in human beings [5,6,7,8,9]. Chlorpyrifos, [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is one of the most extensively used broad-spectrum OPs, and its phosphorus is linked to a sulfur with a double bond (P = S) (Fig. 1). It is registered for use on lawns, ornamental plants, animals, domestic dwellings as well as commercial establishments [11]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.